This safeguard model has 8B parameters and is based on the Llama 3 family. Just like is predecessor, [LlamaGuard 1](https://huggingface.co/meta-llama/LlamaGuard-7b), it can do both prompt and response classification. LlamaGuard 2 acts as a normal LLM would, generating text that indicates whether the given input/output is safe/unsafe. If deemed unsafe, it will also share the content categories violated. For best results, please use raw prompt input or the `/completions` endpoint, instead of the chat API. It has demonstrated strong performance compared to leading closed-source models in human evaluations. To read more about the model release, [click here](https://ai.meta.com/blog/meta-llama-3/). Usage of this model is subject to [Meta's Acceptable Use Policy](https://llama.meta.com/llama3/use-policy/).
Context Window
8k tokens
Pricing (Input / Output)
$0.00019999999999999998 / $0.00019999999999999998 per 1M
Architecture
none
Modality
text->text
curl -X POST https://api.neuralhub.xyz/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer NEURALHUB_API_KEY" \
-d '{
"model": "meta-llama/llama-guard-2-8b",
"messages": [
{ "role": "system", "content": "You are a helpful assistant." },
{ "role": "user", "content": "" }
],
"temperature": 0.7,
"max_tokens": 500,
"top_p": 0.9
}'The API returns an OpenAI-compatible response. Example:
{
"id": "chatcmpl-<uuid>",
"object": "chat.completion",
"created": 1765590373,
"model": "meta-llama/llama-guard-2-8b",
"choices": [
{
"index": 0,
"message": {
"role": "assistant",
"content": "The answer to life, the universe, and everything is famously 42..."
},
"finish_reason": "stop"
}
],
"usage": {
"prompt_tokens": 26,
"completion_tokens": 169,
"total_tokens": 195
}
}